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Solitonic structures in a nonlinear model with interparticle anharmonic interaction
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Using a special combination of relevant parameters for a model with interparticle anharmonic interactions,
we can predict the appearance of solitonic structures. The most remarkable representatives of the structures
found here are the so-called drop compactdsslitons with compact support in the shape of hard spheres
cusps, peak solitongeakong and defects. These analytic solutiofsémilar to others in their family are
obtained by considering strong restrictions on the possible values of their velocities. We analyze two types of
physical boundary condition: the trivial and the so-called condensate boundary conditions. The total energy
concentrated in each soliton pattern is also calculated.
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[. INTRODUCTION ing other types of analytic solitonlike structure for the non-
linear evolution equation(l) below by taking into

Growing interest has been focused on finding exact traveonsideration trivial and condensate types of boundary con-
eling wave solutions of nonintegrable systems. The variouglitions. The second question concerns the parameter do-
versions of the so-called Frenkel-Kontorova model havemains where these soliton structures exist.
been studied and solutions with direct applications in a wide The purpose of the present paper is to try to answer the
variety of fields obtained. The most remarkable models ofiuestions posed above and discuss the possibility of deter-
this type are the sine-Gordon adet systems; see, for ex- mining the velocity values of the solitons. Below, we report
ample,[1-4] and citations therein. There is clear evidencethese findings for the same model proposed18]. These
that kink internal modes are not only limited to the case of aStrong nonlinear analytic objects were obtained without dis-
harmonic interparticle interaction; rather, it was found that'egarding nonlinear terms in the equation of motion and con-
such solutions also occur in discrete chains, i.e., anharmonfdering only different combinations of the main parameters.
nearest-neighbor interparticle interactiff-7]. It has also  With this approach the specific velocity values for each soli-
been shown recently that nonlinear lattices can support solfon pattern were found.
tons and other kinds of excitation which behave like shock We analyzed this model by considering two types of
waves in integrable and nonintegrable lattif@k The inclu-  boundary conditions: the trivial and the condensate types of
sion of anharmonicity in the study of lattice models can pro-boundary conditions at infinity as is usual in physics. We
duce a variety of features. For instance[9 this inclusion ~ Will show that for appropriate velocity values the dynamics
was done by taking into account the interaction betwee®f the system is dominated by self-sustained traveling soli-
Spins and phonons in the guantum Heisenberg model of fe|t.0niC structures. In the case of the trivial boundary condition
romagnetism. By using the generalized coherent state aj-Was possible to obtain the so-called drop compacton and
proach it was possible to find a cubic-quintic nonlinearpeak soliton or peakon. It is surprising that it is possible to
Schralinger equation that in a particular case of parametridind such structures by applying the simple reasoning that is
domain values produces bright, dark, and singular soliton§ommon for obtaining other classes of compactons, kink
[9-11]. compactons, for example. These solutions are strongly local-

The research involved in finding analytic expressions forized in space, they travel without distortions, and they do not
soliton structures is stimulated by physical applications andPresent any infinite tails. We use the term drop compacton to
by the interest in fundamental dynamics properties of nondesignate solutions that in some manner resemble the shape
linear models. Among these, the most interesting structure@f hard spheres. For the condensate type of boundary condi-
consist of solutions that resemble “real” particles, in thetion, we have obtained a rich analytic diversity of soliton
form of hard spheres. These structures, for obvious reasongatterns that are represented by dark, cusp, peak, kink, and
will interact with each other only when they come into con- shock structures.
tact in a way similar to the contact of hard spheres. It is
worthy of mention that Rosenau and Hymjd2] found so-
lutions of the solitary type without infinite tails, termed soli-
tons with compact support or compactons. Recently, in the Let us begin with the equation of motion in thet1
very interesting work13], the generalized* or double well  space-time manifold proposed [ii3]:
model with anharmonic interparticle interaction in the con-
tinuum limit was studied, and various types of kink compac-
ton were found. The analysis was done for specific parameter
values that additionally determined the compacton velocities.
So at least two questions can be posed at this stage of ré&s usual the subscripts indicate partial derivatives with re-
search. The first is concerned with the possibility of obtain-spect to timet and space. Equation(1) was obtained as a

Il. THE MODEL AND SOLITONIC STRUCTURES
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continuum limit of the equation of motion for a discrete sys-
tem whose Hamiltonian was proposed as

1/d®,
t

H=2, [E d

? Vo 2\2
+ 5 (1= D>+ U( Py~ D)

)

with interaction potential between sites taken as

C| 2 Cnl 4
U(¢n+l_¢n):?(®n+l_q)n) +T(¢)n+l_¢)n) .
()

Here ®, denotes the position of theth particle measured 5 " : " 5
from thenth lattice site,V, andC, are constant parameters, :

and Cy, is the parameter that controls the strength of the [ig. 1. peaklike soliton that is obtained by merging two parts of

nonlinear coupling. the solution(7). With increasingF, the peak becomes more acute.
As was mentioned above, E(.) has been treated analyti-

cally for several important cas¢43] and kink compactons  After some algebra the solutions can be found analytically

were obtained, that is, solitonic kinks with compact supportand, for the sake of clarity, let us classify them in the fol-

Indeed, in subsequent papers their properties and other sollbwing manner.

tions were analyzed in great detpl4,15. The velocities of (a) Peak soliton.These solutions emerge when the gen-

the kink compactons were determined from the relatién eral equatior(5) is transformed using Ed6) to

—C;=0. In our treatment we will not consider this relation

because its use could imply energy divergence for our local- \/E

ized structures. We now analyze the same equdtiprand O,;==* E‘D

try to find the velocity values for existing solitonic patterns.

In order to do this we begin with a primary constriction: the Applying the boundary condition@), and solving the above

essential features of physically available solutions are detegifferential equation, it is easy to find the peakon defined by

mined by imposing the boundary condition. Let us first anamerging the next two solution branches:

lyze the case of the drop type of boundary condition.

F
A. Drop type of boundary condition (D)= exp( = \[E(g_ bo)

Now, for Eq. (1) we take into consideration the indepen-
dent variable=x—ut in order to find, as usual, traveling
wavesd () = D (x—ut) with constant velocity. The trivial
or drop boundary condition is determined by the expression

. (7)

The positive sign of the exponential branch corresponds to

the case wherég<{, and the negative one t6={,. The
raphic that represents this solution is presented in Fig. 1,
hile the value of{, is determined naturally by the initial

®—0, ®,—0 at{—*x, (4) condition. When the values &f increase (JZH.C|) the_ pea-

kon shape transforms to the form oféafunction. A similar

unusual solitary wave, named a peakon, was founplL&}

for a different type of nonlinear evolution equation.

(b) Drop compactonsWe introduce this name to desig-
nate solutions that usually have the form of hump solitons
but are defined now only in a finite space sector, and because
of their forms and properties are reminiscent of hard spheres.
Outside this sector, the field vanishes. In other words, this is
in some manner the common drop soliton but without its

One can simplify Eq(1) using the relation$4) and consid-
ering

(I)t:_u(l)g, (I)X:(I)§1

and after integrating one has

(D)~ F(D,)2+G 34_(1)2 -0 5) infinite tails. The determined equation for obtaining these
¢ ¢ 2 ' solutions is
Here F=2(C,—u?)/3C,, and G=4V,/3C,,. In order to ©.—s|E 1_32
solve the differential equatiofb), it seems natural to intro- & 2 )

duce the following ansatz. Solitonlike structures are avail-
able if the parameters of the strong model satisfy the follow-+rom here it is easy to find the solutions
ing relation:

: ®

e \E
(UZ_C|)2+6V0Cn|:O. (6) db=+.2si §(§+§0)
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FIG. 2. Drop-compacton solutions. They change their shape in ) o ) .

the space while their amplitudes remain constant. Here we present G- 3. Typical kinklike structure without small perturbation
three curves at fixed valueg,=1/2 andu=3 and varying the near its center. This solution corresponds to the configuréoior

parametelC,: () C,=2, (b) C,=5, and(c) C,=8. the boundary condition Eq17).

where® lies between— 2 and 2 andF=V,/(u’~C)). wherex; is determined by the region of existence for each

Because of the restriction imposed by the boundary condiconcrete case of solitonic structures. Using the above expres-

tion (6), it is reasonable to now make the following state- sion one obtains

ment: solitonic structures can be obtained by choosing the

initial condition \F/2¢,= /2 that determines the center of - Vo

mass of the drop(antidrop compacton when— /2 Ege=—=(3C+u’) \/5—— (10
<\[F/2¢<w/2. Thus, it appears to be possible to find drop- 2.2 u=C

compacton solutions upon the fulfillment of the above strong
requirements. The width of this drop-compacton can be~rom this relation we observe that the energy for traveling

evaluated easily and has the form compacted drops is limited by their velocity values. Indeed,
whenu?—C,, the energy(10) tends to be infinite. Conse-

quently, the nonavailable velocities for these solutions are
L= W\[é U= *+/C,. It is surprising to notice that these velocity val-

ues allow the existence of the kink compactdlet us call
them the first typestudied in[13]. From here, one can infer
that drop compactons cannot coexist with first type kink

When we observe the properties of this structure on con . I
sidering the variation of its parameters, we find some inter€OMpactons since the two types of compacton exist in differ-

esting behavior that leads us to use the name “drop compa(,e-nt regions of the parameters delimited by their velocities.
ton.” Indeed, it is easy to check that wheA— C, and with Consequently, this crucial value can be regarded as a point of
a fixed value ofV, in Eq. (6), the “volume” of the drop bifurcation. When the velocities of our traveling solutions

compacton decreases due to the increase ehile its am-  2PProach the value afo, kink compactons arise. This sys-
plitude remains constant. In the opposite case, whes tem behavior suggests to us the appearance Of a pha_se tran-
decreasing, the velocity does not approach the valug, of sition of second order at this point of bifurcation. This is

and the “volume” increases. In both of these cases, the third©cause, gutside the value g, Ejhe syitem is “21 a Stat? that N
parameteiC,,, is defined from Eq(6). As an illustration of ~SUPPOIts drop compactons and peakons, and exactly at the

this fact we have provided Fig. 2, where three different dropValue Up kink compactons appear, determining the second

compactons with different lengths or “volumes” are shown. statg of the SYSte'”.”- .
Now, we evaluate the energy of these configurations. We Finally, evaluating the energy of the peak solitons, one
can calculate the total energy localized in the solitonic tray-2TIVeS at the expression

eling structures with velocity by means of the following
expression: (11C,+u?) Vo
E,= .
P 6\2 u2-C

(11)

x| 1 1 1
Etlotalzf {E(th""iclqj)z("_zcnlq)i . . . . .

X1 It is easy to see in this case also, that there is a divergent
value of energy when this peakon travels with velocity equal

+Vo(P2/2—1)D?|dx, (99 toug==.C,.
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) _ _ ] FIG. 6. Cusp soliton in the form of a straight bubble directed
FIG. 4. Kink soliton with small hump near its center that can be gown that is an acute dip in the condensate. This figure represents
treated as a traveling well domain. This is it configuration for  the relationg(d) of Eq. (189).

the condition(17).

Thus, the signs oV, and C,,, have to be opposite to each
other. We aim to use this powerful restriction to find solito-
Traveling wave solution® () = ®(x— ut) with constant  nic structures. Substituting E¢L4) into Eqg.(13) and trying
velocity u can also be obtained when the boundary condito find solutions that satisfy the condensed type of boundary
tions are determined by the expressions condition(12), one obtains a set of inverse functich§?) ~*

that can be conveniently written as
/1 <1>2+ nd
m —_—— —
2 2

(®)*=A(D)2+B(1-D?)?=0, (13 (15)

B. Condensate type of boundary condition

b—-=*1, &,—~0 at (—=*o. (12

As a result of the application of the boundary condit{&@g)
to Eqg. (1) we obtain the nonlinear equation

+ JA(Limn— {0) = arcsir( %) +1n

with A=2(u?—C,)/3C,,|, B=—2V,/3C,,, andC,#0. We  wherel,m,n=+,—, i.e., these symbols simply indicate the
can now exploit the technique used above for finding dropsign of each denoted term in the right-hand side of &8),
and peakon solutions, in order to analyze this equation. Skipand ¢, is defined by the chosen initial condition, i.e., when
ping the details, we find that the integration of Efj3) oc-  /=0.

curs when the following relation holds: Let us analyze E(15). It is readily observed that for this

case we have four pairgossibilities of defined boundary

(u?—C))%2+6V,C,=0. (14)  conditions according to the definitiofi2). Each pair pro-

(0] o
1.0f
0.8}
06
041
(1) -
4 G
-4 2 M 2 4 2 ' 4

FIG. 5. Solitonic structure that we named the peak bubble be- FIG. 7. Solution like a peakon that represents an excitation to
cause of its rarefied form in the center; representat@rfor the  the constant condensate. The corresponding conditions are given
condition(18). by (e).
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FIG. 8. This is an example of an exotic solution that has the
shape of a loopsee relationgf) in text]. Unfortunately, its corre- FIG. 10. Second type of shock structure with a form like a
sponding energy value is divergent. domain well that appears provided configuratitm is satisfied.

duces two branches to construct the solutions. One of them Roundary conditionstravels with the same velocity, the
mainly situated in the negative sector fwhile the other ~necessary gap in the spaceg for coalescing solutions, de-

branch is in the positive one. termined by the initial conditions, can be presented in two
In what follows, we make the assumption that at a suit-types:
able point{, in the spacel the two branches of the solution A;=0, A,=arcsinl]=mn/2. (16)

defined by inverting Eq(15) merge into each other and one With th at s i ind how below that
can easily recover the soliton forms. The criteria for deter- V't tNESE Statéments in mind, we can show below tha

mining this point of coalescing depend very much on thelh€ inverse function of(®) of Eq. (15 shows structures

initial configuration of the system. This is similar to the pro- that resemble the usual bell, peak, cusp, shock, kink, and

cedure of centering the solutions. Such restrictions imply thauPPIe types of soliton. Additionally, loop soliton solutions

in some cases we have to “move” one of the solutions to the"¢'® found. Thus, different V?'OC“V restrictions accompa-
left or to the right for merging. In other cases, such opera-n.'ed b.y the creation of so[|ton|c structures occur wh.e.n the
tions are necessary since we will restrict ourselves only t igns in Eq(15) are determined .by the b_ounda_lry cqndltlons.
solutions without ambiguities: when the two branches do no e report the best representative configurations in the fol-
show explicit values for a certain region of the independent®V"9- _ .
variableZ. In this way, in only a few cases is the continuous |, Let l,J,S f|rst take the solutions when they merge in the
condition satisfied; usually at the point of merging we have SPac€” with A,=0; thus for

discontinuities. One of the very surprising solutions obtained
utilizing this approach is the so-called loop soliton. Since
each branch of the solutioffor each pair of determined

®——1 while {——», ®—1 while {—w. (17)
The solitonic structure can be defined by

Q
15

FIG. 9. Typical shock structure that is moving in the medium as FIG. 11. Structure that resembles the form of a peakon, and
a defect and represents the configuratign emerges when the relatiofig are satisfied.
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VAL, o if JAZe(—%,00 and —VJAZ ,_ if JA{e[0x) (a),

w

VAL o f We(—oo,g and —JA{ _, if JAle

77 b
—
5| (b).
The corresponding pattern structures are represented in Figsa8d 4(b). These are kinklike solitons; the second one has
a little peak near its center. They can be interpreted as domain wells traveling along the medium.
For

®—-1 while {(——-o and ®—1 while [—» (18

the solutions are determined by
VAL o if JAZe(=»,0] and VAL . if JAZe[0%) (o),
VAL oo it VAle(==,0] and —VAZ .- if JAZe[0x) (d).

These structures exist as excitations in the condensate state, like a rarefaction of the field. Thdisderfigs. 5c) and
6 (d)] suggest the names peak bubble and cusp bubble, respectively. Additionally we have

VAL it (Ale|—w,—2 and —VAZ if JAle —g,m) (e).
This is the usual peak solitafY) and exists as an excitation to the nonzero backgrdeed Fig. 7.
For
®—-—-1 while (——~ and ®&——-1 while (—oo, (19
the two branches
a ar
\/K§+++ if \/ng _OO,E and _\/K§—++ if \/ng _E'OO) (f)

merge together and produce the configuration named the loop s@fitpng).

Let us now consider the case of solutions that are specially obtained by coalescing two branches of each solution pair in Eq.
(15) for the second type of nonzero gap in Eqg. (16).

For the boundary conditiofl7), the solutions are

VA

(i | it JAZe(==0] and —Jﬂ(gfg) it VAZe[0%) (9),

)

Jﬂz___—g) if JAZe(—%0] and —JK(§+_++2 it JALe[0s) (h).

These relations, represented as pictures in Figg) &nd 10(h) are usually referred to as shock waves because of the abrupt
discontinuities that are observed when they are traveling. This suggests the interpretation of such solutions as propagating
defects in the lattice. Shock waves are universal entities that are observed in many diverse nonlinear systems. However, it is
surprising that they can appear analytically in the second order nonlinear equadions

For boundary conditionél8) the solutions can be constructed using the following two branches:

ﬁ(m:%) it JAle(—=,0] and —ﬁ(m:%) it JALe[0m) (i),

a
\/K(§++E

o

5| it JAZe[0m) ().

if JAZe(—»,0] and —JK(g++

Both solutions exist as excitations above the condensate state; the first one takes the form of a hunffisplitdhwhile
Fig. 12 (j) represents a peakon.
For boundary conditiori19) the soliton structures can be obtained by utilizing the following relations:
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™
\/K<§+++E

if Jﬂge(—m,g

and —\/K(§+++;) if JACe

)
-5 (k),

JK(§+++—§) if VA{e(—=0 and —JK(/;H—g) it VAZe[0m) ().

The first pair is a loop solitofsee Fig. 13and the second is E! El

. . total total
another representative of the peaksee Fig. 14 5 5 (e),

All of these rich structures are obtained by considering

the anharmonicity in the intersite interaction potential. In ad-
dition to the well-known solitons, different solitonic struc- 1
tures such as defectons, shocks, peakons, cusps, etc., can|2 g7
appear by fixing boundary conditions of condensed type.
Looplike solitons similar to that found ifL7] can also exist.
Also, as one can observe from the solutions above reported,
we have a peak bubble that exists as a rarefaction in the
constant background field. Such structures were also ob- 112 a2

1 32

A

Y2 1[5 3
z) Ts[z‘r Cnia

avAV, (g) and (j),

(U2+ C|)

+

1 3
_§7T+Z

tained recently in other types of nonlinear differential equa-{ = . _ — 2 1 i Eg_ 2_1 1
¢ ) - ) T In2|(v+C)) + 7|Cha
tion, for example, in the coupled Dym equations by using the\8 = 2 A 16[16 32 A
algebraic geometric approagh8]. Similar humps as nonlin-
ear excitations to the groqnd state of coqdensate type have 4| =+ —7laJAv, (h) and (i),
also recently been shown in plasma phy$it8]. 4 8

Below we calculate the energy of each structure that is
shqwn above. Despit_e the very interest_ing shape that Ioop 3 1, 1\¥2 1[5 9 1\372
solitons possess, their energies show divergent values. This §7T+ > (v°+C)) N + 16 §+ i Cha N
means that for real production of such structures we need
infinite energy, and that is in accordance with the statements 3 3
of the general theory of topological solitons. The twist g™tz avAVy(l).
needed to form loops can absorb infinite energy in one di-
mensional space if we have already fixed beforehand the ) )
conditions at infinity. For (d), (f), and(k), the total energy diverges. The energies

Let us now present the results for energies that can paf all our soliton structures are restricted by their velocities.
obtained from Thus to avoid singularities in energy values, from Ef) it

is necessary to impose the condition
E —fﬂlzy {1q>2+ Loz Ic, 0
total — 2y 2 t 2 1+ x 4 nl* x A= 4V0 ~0. (22)
U2_C|

1
+ =Vo(1—P?)2|dx. (20

2
The final forms of the energies of all the structures found
above are represented by the following expressions:
1 1/2 1 3/2
b 2 il = (e il
8’7T(U +C|)(A + 64(77 Z)Cm(A)
1
+§(6+W)JKVO (a) and (c), (21)
1/2 1/2 3 1 3/2 C
. 2 - - — - L J
2(87T+1)(U +C|) A +32 5+2’7T CmaA 4 4
1/1 ; ;
il el FIG. 12. Plot showing the form of a peakon obtained by merg-
+ +3 | VAV b),
4\27 \/_ o (0 ing two branches as is explained in the relati¢ins
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D @
15+

FIG. 14. We can observe here the plot of a typical peak soliton
for the structurgl) in text.

FIG. 13. Representation of an exotic loop soliton for the exprestons and peakons will travel with velocities with the sign
sions (k). After evaluation of the energy of this configuration one in the right hand side of Eq24) when
finds that it diverges. 2
V>0, u-C;>0, and C,<0, (25

Ill. PROPERTIES OF THE SOLITON SOLUTIONS and with negative sign when

A small deviation from the vacuum solutionb=®,
+ 7,/ 7|<1, for solutions with trivial®,=0 and condensed
vacuum®,=1 is described by the linearized equation

Vp<0, u?—C;<0, and C,>O0. (26)

The solutions above a condensed vacuum possess completely
D= Ci Dyt 2n=0 (23)  inverse properties; for instance, the sigmz)( in the right
hand side of Eq(24) will occur if Vy<0, u*-=C,>0, and
with u=—2V, for solutions above the trivial vacuum and C,>0, and similarly for the negative sign. For both cases
=4V, for solutions with condensate boundary conditions.static configurations are available wh¥jg= —(C)%6C,,.
The solutions of Eq(23) are plane traveling waves with Finally, we can say that they exist in different sectors of the
dispersion main parameter¥, andC,,.
) . For solutions satisfying condensate boundary conditions,
0 =Ck+ p”. the strong localizations are determined by the topological
invariant charge associated with their field values at infinity.

. o 2
Consequently, the vacuum will be stablekf>—u®C.  on the other hand, both parts of the coalescing solutions
Then the linear excitations above the trivial vacuum correy,avel with equal velocity in the same direction. All these

spond to particles of masg=\—2V,, and u=v4V, for  requirements satisfy the restriction imposedoin Eq. ( 22)
solutions with nontrivial vacua. to be positive. Additionally, ifu?>—C,=0 we should need
For the trivial boundary condition in the parameter spacgnfinite energy values because of E¢0), (11), and (21).

we obtained a restrictio(6) under which drop compactons Thjs sjtuation can be avoided since it represents a nonphysi-
and peakons could exist. As was demonstrated above, thgy sityation.

energy of these structures tends to be divergent as the veloc- Next we consider the scale transformation,= ® (a )
ity approaches the value of. for the solutions with trivial vacuum. The initial Hamiltonian

From Eqgs.(6) and (14) it is not difficult to derive the ¢y the stationary fieldb(¢) can be rewritten as
possible velocity values of drop compactons and peakons,

u=u, and of the whole family of solutions with velocities H=T,+T,+U,, (27)
u=u,, with condensed boundary conditions. The explicit ex-
pression for the velocity is presented as follows:

=5 2+chI> 2d T—}CJCD *d
(U)2=C,+ V—6V,Co. (24) 1=5 (UG | (@)7dE To=7Cy | (P)7dS,

Thus we find a formal degeneracy of the velocity for solito-
nic structures satisfying the two different types of boundary
condition at infinity. This apparent degeneracy disappears
when the energy expressions for both types of solytitgs.  As is obvious, the extremum of the Hamiltonié2v) will be
(10), (12), and(21)] are analyzed. Indeed, studying the non-given by the solutionb , whena=1 [20]. Under this trans-
linear excitation above the trivial vacuum, the drop compacformation, Eq.(27) becomes

with

Ulzvof (P?/2—1)d2d¢.
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3 1 E ..... .
H[®,]=aTy+a T+ — U, (28) 35 T R ac
Pl----b
Using (dH/da),_; we can get the virial relation %07 . L ;J
25 ————
Ti+3T,-U;=0. )
204 S L. ¢
From Eq.(29) it also follows that for stable structures under e el g
these transformationsa( oscillationg the second variation 15{ . ;
5°H of the Hamiltonian(28) has to satisfy the following L7 i
relation: 104" 0T ¥
KEERN .’._-'
dzH 51 ---\H-'n;.-.'.—..'.-"'—_'.._.':;._..—‘-::'-'—“ /
— =2(3T,+U;)>0. (29 #
da2 0 T T T T T T T T
a=1 0 2 4 6 8 10 12 14 16
First, by making use of the relatioil0) for drop solutions, FIG. 15. Plot showing the dependence of the energy on the
the second variatiod?H represented by Eq29) takes the  velocity for each structure with nontrivial vacuum at infinity. For
form the values/y,=2,C,=14.40 the structures that resemble humps, de-
fects, and peaks need less energy to be excited above their corre-
5 WVo‘/Uz— C (30 sponding vacuum fields.
OH=——F———. 30
V2o
° B N il S (T
iti = —pb
In order to have positive values 6fH we need 2V, 48v2\\V,
V<0 and u?<C,, (32 v
0
. . . . +2yVo ,
which correspond to solutions with velocity valuescord- C,—u?

ing to Eq.(26)]
a, B, andy being the respective numerical coefficients of
(u)2=C;—J—6V,Ch. (32)  each term of the energy expression. In order to explore the
stability of these structures under oscillations we utilize
For peakons, the same treatment gives us the restriction f@q. (29) and after some calculation find that the structures
finding stable solitons for which the second variation of thewith nontrivial vacuum can exhibit stability under oscilla-

Hamiltonian gives tions for
) 1 (C-ud) W, C,>u?>C,—«V, (34)
S°H= ) . (33
22 Ju?-¢ whenV,>0, C,—u?>0, andx=2(2y/B)Y* or for
For positivity of the second variation of the Hamiltoni&8) Ci+kV,>u’>C, (35

it is necessary to have once again the same restri3bras
in the case of drop compactons. Consequently, these solwhenV,=—V;<0, C,—u?<0, andV;>0.
tions will have the velocity values determined by E82). Next we turn to a qualitative explanation of which struc-
Then, the case of physical interest could occur when théures of all those presented here with the nontrivial vacuum
restriction (31) is satisfied, meaning that, for this case, theare lowest in energy. To do this, we check how the energy
solutions under consideratiofpeakons and drop compac- depends on the velocity of each structure. In Fig. 15 we
tong are stable with respect @ oscillations. present the plots of this dependence. The structures with
Second, just as we did in our study of solutions withhigher probability of appearing in this model are those that
trivial boundary conditions, here we also use thescale carry less energy in comparison with others for a given ve-
transformation and find the following condition of stability locity. As we see from Fig. 15, these structures are those
under this transformation for the whole class of energies distermed humg(e) and (i)] and peak(j) solitons as different
played in Eq(21). The second variation for the Hamiltonian excitations to a constant fietl =1 When at infinity we have
of this class is the same as in E9), but now with different field valuesb= =1, the shocklike structure&y)
L L and(h) are those with more probability of appearing in com-
parison with the kinks, for example. These structures need
TZ:ZC”J ()", UZ:EVOJ (1-®%)%d¢. less energy to become nonlinear F()axcitations with respect to a
constant field in the first case and to different constant field
It is noticeable that the energy formulas for all solutionsvalues in the second case.
encountered above have the following typical form in terms For structures that emerge as nonlinear excitations above
of the three parametets C,, andV, [see Eq.(21)]: the trivial vacuum, the peakons are those that carry less en-
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ergy in comparison to drop compactons for a given velocity potential that provides additional attractive or repulsive in-
It is not difficult to check this statement by simply analyzing teraction between sites. The trivial boundary condition al-
the analytic formulas for their energy. lows the appearance of drop compacton and peak solitons,
Physically, these results are quite interesting, given thavhen the parameters satisfy the specific algebraic equations
different applications that they could have in hydrodynamics(6). When the boundary condition is of the condensate type
for instance: above the unperturbed constant surface of ma@nd the relevant parameters satisfy Eif), solitonic struc-
ter, under different perturbations, the interaction of nonlin-tures like defects, kinks, bubbles, peakons, and cusps were
earity and anharmonicity could lead to generation of peakonfund. These solutions complement the rich family of solito-

and bell-like structures, such as one can observe in a basin B¢ structures already reported in the literature. At the same
liquid, for example. time, all structures will travel with the same velocity if we

Let us finally remark that, as was reported 18] the kink ~ fix the parameters and the boundary conditions beforehand.

compactons are available whéh,>0. Our compacton so- It should be noted that the real values of the enerffies.
lutions according to Eq(26) also appear when this inequal- (10), (11), and(21)] of both types of solutions limit the val-

ity is satisfied. In other words, this region of existence alsd!€s of the traveling velocity. For the appearance in the me-
shares the drop compactons obtained here with the Signdlum of exotic loop soliton structures, infinite energies are
(—) in the right hand side of E¢24). This interesting be- rgquwed. In the case of the condensed type of boundary con-
havior is very similar to that obtained in other reports in thedition, of all the variety of structures found here, the most
literature. For instance, the drop solutions can coexist witfProbable to exist are structures like hump and peak solitons
kink solitons in the same parameter region of the cubic-2S nonlinear excitations above a constant field, while defects
quintic nonlinear Schidinger equatiori9]. They exist in the ~ are of lower energy when the field has different vacuums at
same region of théone parameter domain but in different infinity. For solutions with the trivial vacuum, those termed
vacuums. This feature seems at first glance to be universap€akons carry less energy for given velocity values. Using
i.e., the coexistence in the parametric domain of drop solithe Virial approximation we can predict the region of validity

tons with kink solitons must be possible in many nonlinearfor the velocities of all these structures and subsequently the
systems. conditions for their stability under the so-called oscilla-
tions.
Checking the formulas for the velocities of both of these
IV. CONCLUSIONS types of structure, one can easily find that there is a critical
. . , . value of velocity that divides the regions of existence in the
As is well known, the existence of solitons, and especially ; .
arameter space for both types of solution. This value corre-

particular versions such as compactonlike structures in norE onds to those structures found by Remoissenet and co-
linear equations (differential and discrete or integro- b y

differential) implies strict requirements to be satisfied. Sincevfolkjg in[13-1 I':b?r 0:_r Sﬁlunons’ this Vetlr?city Valhue y
solitonlike structures are very special solutions, in this paper_ — V-1 1S INACCESSIDIE. FInally, We can say that much wor

we have obtained conditions determined by combinations ofhust be dong In the. hear _future to relate these results to
the parameters of the model in order to integrate the corre[—)r"’“:t'caII a_pphcatl(_)ns in nonlinear optics, fqr example, and to
sponding nonlinear evolution equations. We have demon§tUdy the interactions between these solutions.

strated that anharmonicity in the interparticle interactions can
allow the appearance of a rich variety of static and traveling
solitonic structures. The configurations obtained here are de- The authors are indebted to Professor V. G. Makhankov
termined specifically by applying two types of boundaryfor constant support and discussions. This work was sup-
condition, trivial and condensate, and by considering the sigported in part by CONACYT-MEX Project No. 33147-E and
of the coupling in the anharmonicity term of the intersite UAEM Project No. 1420/2000.
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