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Solitonic structures in a nonlinear model with interparticle anharmonic interaction
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Using a special combination of relevant parameters for a model with interparticle anharmonic interactions,
we can predict the appearance of solitonic structures. The most remarkable representatives of the structures
found here are the so-called drop compactons,~solitons with compact support in the shape of hard spheres!,
cusps, peak solitons~peakons!, and defects. These analytic solutions~similar to others in their family! are
obtained by considering strong restrictions on the possible values of their velocities. We analyze two types of
physical boundary condition: the trivial and the so-called condensate boundary conditions. The total energy
concentrated in each soliton pattern is also calculated.
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I. INTRODUCTION

Growing interest has been focused on finding exact tr
eling wave solutions of nonintegrable systems. The vari
versions of the so-called Frenkel-Kontorova model ha
been studied and solutions with direct applications in a w
variety of fields obtained. The most remarkable models
this type are the sine-Gordon andF4 systems; see, for ex
ample,@1–4# and citations therein. There is clear eviden
that kink internal modes are not only limited to the case o
harmonic interparticle interaction; rather, it was found th
such solutions also occur in discrete chains, i.e., anharm
nearest-neighbor interparticle interaction@5–7#. It has also
been shown recently that nonlinear lattices can support s
tons and other kinds of excitation which behave like sho
waves in integrable and nonintegrable lattices@8#. The inclu-
sion of anharmonicity in the study of lattice models can p
duce a variety of features. For instance, in@9# this inclusion
was done by taking into account the interaction betwe
spins and phonons in the quantum Heisenberg model of
romagnetism. By using the generalized coherent state
proach it was possible to find a cubic-quintic nonline
Schrödinger equation that in a particular case of parame
domain values produces bright, dark, and singular solit
@9–11#.

The research involved in finding analytic expressions
soliton structures is stimulated by physical applications a
by the interest in fundamental dynamics properties of n
linear models. Among these, the most interesting structu
consist of solutions that resemble ‘‘real’’ particles, in th
form of hard spheres. These structures, for obvious reas
will interact with each other only when they come into co
tact in a way similar to the contact of hard spheres. It
worthy of mention that Rosenau and Hyman@12# found so-
lutions of the solitary type without infinite tails, termed so
tons with compact support or compactons. Recently, in
very interesting work@13#, the generalizedF4 or double well
model with anharmonic interparticle interaction in the co
tinuum limit was studied, and various types of kink compa
ton were found. The analysis was done for specific param
values that additionally determined the compacton velocit
So at least two questions can be posed at this stage o
search. The first is concerned with the possibility of obta
1063-651X/2001/63~4!/046606~10!/$20.00 63 0466
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ing other types of analytic solitonlike structure for the no
linear evolution equation ~1! below by taking into
consideration trivial and condensate types of boundary c
ditions. The second question concerns the parameter
mains where these soliton structures exist.

The purpose of the present paper is to try to answer
questions posed above and discuss the possibility of de
mining the velocity values of the solitons. Below, we repo
these findings for the same model proposed in@13#. These
strong nonlinear analytic objects were obtained without d
regarding nonlinear terms in the equation of motion and c
sidering only different combinations of the main paramete
With this approach the specific velocity values for each s
ton pattern were found.

We analyzed this model by considering two types
boundary conditions: the trivial and the condensate type
boundary conditions at infinity as is usual in physics. W
will show that for appropriate velocity values the dynami
of the system is dominated by self-sustained traveling s
tonic structures. In the case of the trivial boundary condit
it was possible to obtain the so-called drop compacton
peak soliton or peakon. It is surprising that it is possible
find such structures by applying the simple reasoning tha
common for obtaining other classes of compactons, k
compactons, for example. These solutions are strongly lo
ized in space, they travel without distortions, and they do
present any infinite tails. We use the term drop compacto
designate solutions that in some manner resemble the s
of hard spheres. For the condensate type of boundary co
tion, we have obtained a rich analytic diversity of solito
patterns that are represented by dark, cusp, peak, kink,
shock structures.

II. THE MODEL AND SOLITONIC STRUCTURES

Let us begin with the equation of motion in the 111
space-time manifold proposed in@13#:

F tt2ClFxx13CnlFx
2Fxx22V0~F2F3!50. ~1!

As usual the subscripts indicate partial derivatives with
spect to timet and spacex. Equation~1! was obtained as a
©2001 The American Physical Society06-1
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continuum limit of the equation of motion for a discrete sy
tem whose Hamiltonian was proposed as

H5(
n

F1

2 S dFn

dt D 2

1
V0

2
~12Fn

2!21U~Fn112Fn!G
~2!

with interaction potential between sites taken as

U~Fn112Fn!5
Cl

2
~Fn112Fn!21

Cnl

4
~Fn112Fn!4.

~3!

Here Fn denotes the position of thenth particle measured
from thenth lattice site,V0 andCl are constant parameter
and Cnl is the parameter that controls the strength of
nonlinear coupling.

As was mentioned above, Eq.~1! has been treated analyt
cally for several important cases@13# and kink compactons
were obtained, that is, solitonic kinks with compact suppo
Indeed, in subsequent papers their properties and other
tions were analyzed in great detail@14,15#. The velocities of
the kink compactons were determined from the relationu2

2Cl50. In our treatment we will not consider this relatio
because its use could imply energy divergence for our lo
ized structures. We now analyze the same equation~1! and
try to find the velocity values for existing solitonic pattern
In order to do this we begin with a primary constriction: t
essential features of physically available solutions are de
mined by imposing the boundary condition. Let us first an
lyze the case of the drop type of boundary condition.

A. Drop type of boundary condition

Now, for Eq. ~1! we take into consideration the indepe
dent variablez5x2ut in order to find, as usual, travelin
wavesF(z)5F(x2ut) with constant velocityu. The trivial
or drop boundary condition is determined by the expressi

F→0, Fz→0 at z→6`, ~4!

One can simplify Eq.~1! using the relations~4! and consid-
ering

F t52uFz , Fx5Fz ,

and after integrating one has

~Fz!
42F~Fz!

21GS F4

2
2F2D50. ~5!

Here F52(Cl2u2)/3Cnl and G54V0/3Cnl . In order to
solve the differential equation~5!, it seems natural to intro
duce the following ansatz. Solitonlike structures are av
able if the parameters of the strong model satisfy the follo
ing relation:

~u22Cl !
216V0Cnl50. ~6!
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After some algebra the solutions can be found analytica
and, for the sake of clarity, let us classify them in the fo
lowing manner.

(a) Peak soliton.These solutions emerge when the ge
eral equation~5! is transformed using Eq.~6! to

Fz56AF

2
F.

Applying the boundary conditions~4!, and solving the above
differential equation, it is easy to find the peakon defined
merging the next two solution branches:

F~z!5 expS 6AF

2
~z2z0! D . ~7!

The positive sign of the exponential branch corresponds
the case wherez<z0 and the negative one toz>z0. The
graphic that represents this solution is presented in Fig
while the value ofz0 is determined naturally by the initia
condition. When the values ofF increase (u2→Cl) the pea-
kon shape transforms to the form of ad function. A similar
unusual solitary wave, named a peakon, was found in@16#
for a different type of nonlinear evolution equation.

(b) Drop compactons.We introduce this name to desig
nate solutions that usually have the form of hump solito
but are defined now only in a finite space sector, and beca
of their forms and properties are reminiscent of hard sphe
Outside this sector, the field vanishes. In other words, thi
in some manner the common drop soliton but without
infinite tails. The determined equation for obtaining the
solutions is

Fz56AFS 12
F2

2 D .

From here it is easy to find the solutions

F56A2 sinFAF

2
~z1z0!G , ~8!

FIG. 1. Peaklike soliton that is obtained by merging two parts
the solution~7!. With increasingF, the peak becomes more acut
6-2
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SOLITONIC STRUCTURES IN A NONLINEAR MODEL . . . PHYSICAL REVIEW E 63 046606
whereF lies between2A2 andA2 andF5V0 /(u22Cl).
Because of the restriction imposed by the boundary co
tion ~6!, it is reasonable to now make the following stat
ment: solitonic structures can be obtained by choosing
initial condition AF/2z05p/2 that determines the center o
mass of the drop~antidrop! compacton when2p/2
<AF/2z<p/2. Thus, it appears to be possible to find dro
compacton solutions upon the fulfillment of the above stro
requirements. The width of this drop-compacton can
evaluated easily and has the form

L5pA2

F
.

When we observe the properties of this structure on c
sidering the variation of its parameters, we find some in
esting behavior that leads us to use the name ‘‘drop com
ton.’’ Indeed, it is easy to check that whenu2→Cl and with
a fixed value ofV0 in Eq. ~6!, the ‘‘volume’’ of the drop
compacton decreases due to the increase ofF, while its am-
plitude remains constant. In the opposite case, whenF is
decreasing, the velocity does not approach the value ofCl ,
and the ‘‘volume’’ increases. In both of these cases, the th
parameterCnl is defined from Eq.~6!. As an illustration of
this fact we have provided Fig. 2, where three different d
compactons with different lengths or ‘‘volumes’’ are show

Now, we evaluate the energy of these configurations.
can calculate the total energy localized in the solitonic tr
eling structures with velocityu by means of the following
expression:

Etotal
1 5E

x1

x2F1

2
F t

21
1

2
ClFx

21
1

4
CnlFx

4

1V0~F2/221!F2Gdx, ~9!

FIG. 2. Drop-compacton solutions. They change their shap
the spacez while their amplitudes remain constant. Here we pres
three curves at fixed valuesV051/2 and u53 and varying the
parameterCl : ~a! Cl52, ~b! Cl55, and~c! Cl58.
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wherexi is determined by the region of existence for ea
concrete case of solitonic structures. Using the above exp
sion one obtains

Edc5
p

2A2
~3Cl1u2!A V0

u22Cl

. ~10!

From this relation we observe that the energy for travel
compacted drops is limited by their velocity values. Inde
when u2→Cl , the energy~10! tends to be infinite. Conse
quently, the nonavailable velocities for these solutions
u056ACl . It is surprising to notice that these velocity va
ues allow the existence of the kink compactons~let us call
them the first type! studied in@13#. From here, one can infe
that drop compactons cannot coexist with first type ki
compactons since the two types of compacton exist in dif
ent regions of the parameters delimited by their velociti
Consequently, this crucial value can be regarded as a poi
bifurcation. When the velocities of our traveling solution
approach the value ofu0, kink compactons arise. This sys
tem behavior suggests to us the appearance of a phase
sition of second order at this point of bifurcation. This
because, outside the value ofu0, the system is in a state tha
supports drop compactons and peakons, and exactly a
value u0 kink compactons appear, determining the seco
state of the system.

Finally, evaluating the energy of the peak solitons, o
arrives at the expression

Ep5
~11Cl1u2!

6A2
A V0

u22Cl

. ~11!

It is easy to see in this case also, that there is a diverg
value of energy when this peakon travels with velocity eq
to u056ACl .

FIG. 3. Typical kinklike structure without small perturbatio
near its center. This solution corresponds to the configuration~a! for
the boundary condition Eq.~17!.
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B. Condensate type of boundary condition

Traveling wave solutionsF(z)5F(x2ut) with constant
velocity u can also be obtained when the boundary con
tions are determined by the expressions

F→61, Fz→0 at z→6`. ~12!

As a result of the application of the boundary condition~12!
to Eq. ~1! we obtain the nonlinear equation

~Fz!
42A~Fz!

21B~12F2!250, ~13!

with A52(u22Cl)/3Cnl , B522V0/3Cnl , andCnlÞ0. We
can now exploit the technique used above for finding d
and peakon solutions, in order to analyze this equation. S
ping the details, we find that the integration of Eq.~13! oc-
curs when the following relation holds:

~u22Cl !
216V0Cnl50. ~14!

FIG. 4. Kink soliton with small hump near its center that can
treated as a traveling well domain. This is the~b! configuration for
the condition~17!.

FIG. 5. Solitonic structure that we named the peak bubble
cause of its rarefied form in the center; representation~c! for the
condition ~18!.
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Thus, the signs ofV0 and Cnl have to be opposite to eac
other. We aim to use this powerful restriction to find solit
nic structures. Substituting Eq.~14! into Eq. ~13! and trying
to find solutions that satisfy the condensed type of bound
condition~12!, one obtains a set of inverse functionsF(z)21

that can be conveniently written as

6AA~z lmn2z0!5arcsinS lF

A2
D 1 lnFmA12

F2

2
1

nF

A2
G ,

~15!

wherel ,m,n51,2, i.e., these symbols simply indicate th
sign of each denoted term in the right-hand side of Eq.~15!,
and z0 is defined by the chosen initial condition, i.e., whe
z50.

Let us analyze Eq.~15!. It is readily observed that for this
case we have four pairs~possibilities! of defined boundary
conditions according to the definition~12!. Each pair pro-

-

FIG. 6. Cusp soliton in the form of a straight bubble direct
down that is an acute dip in the condensate. This figure repres
the relations~d! of Eq. ~18!.

FIG. 7. Solution like a peakon that represents an excitation
the constant condensate. The corresponding conditions are g
by ~e!.
6-4
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SOLITONIC STRUCTURES IN A NONLINEAR MODEL . . . PHYSICAL REVIEW E 63 046606
duces two branches to construct the solutions. One of the
mainly situated in the negative sector ofz while the other
branch is in the positive one.

In what follows, we make the assumption that at a su
able pointz0 in the spacez the two branches of the solutio
defined by inverting Eq.~15! merge into each other and on
can easily recover the soliton forms. The criteria for det
mining this point of coalescing depend very much on
initial configuration of the system. This is similar to the pr
cedure of centering the solutions. Such restrictions imply t
in some cases we have to ‘‘move’’ one of the solutions to
left or to the right for merging. In other cases, such ope
tions are necessary since we will restrict ourselves only
solutions without ambiguities: when the two branches do
show explicit values for a certain region of the independ
variablez. In this way, in only a few cases is the continuo
condition satisfied; usually at the point of merging we ha
discontinuities. One of the very surprising solutions obtain
utilizing this approach is the so-called loop soliton. Sin
each branch of the solution~for each pair of determined

FIG. 8. This is an example of an exotic solution that has
shape of a loop@see relations~f! in text#. Unfortunately, its corre-
sponding energy value is divergent.

FIG. 9. Typical shock structure that is moving in the medium
a defect and represents the configuration~g!.
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boundary conditions! travels with the same velocityu, the
necessary gapD in the spacez for coalescing solutions, de
termined by the initial conditions, can be presented in t
types:

D150, D25arcsin@1#5p/2. ~16!

With these statements in mind, we can show below t
the inverse function ofz(F) of Eq. ~15! shows structures
that resemble the usual bell, peak, cusp, shock, kink,
bubble types of soliton. Additionally, loop soliton solution
were found. Thus, different velocity restrictions accomp
nied by the creation of solitonic structures occur when
signs in Eq.~15! are determined by the boundary condition
We report the best representative configurations in the
lowing.

Let us first take the solutions when they merge in t
‘‘space’’ with D150; thus for

F→21 while z→2`, F→1 while z→`. ~17!

The solitonic structure can be defined by

e

s

FIG. 10. Second type of shock structure with a form like
domain well that appears provided configuration~h! is satisfied.

FIG. 11. Structure that resembles the form of a peakon,
emerges when the relations~i! are satisfied.
6-5
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AAz111 if AAzP~2`,0# and 2AAz212 if AAzP@0,̀ ! ~a!,

AAz111 if AAzPS 2`,
p

2 G and 2AAz221 if AAzPFp2 ,` D ~b!.

The corresponding pattern structures are represented in Figs. 3~a! and 4~b!. These are kinklike solitons; the second one h
a little peak near its center. They can be interpreted as domain wells traveling along the medium.

For

F→1 while z→2` and F→1 while z→` ~18!

the solutions are determined by

AAz212 if AAzP~2`,0# and 2AAz212 if AAzP@0,̀ ! ~c!,

AAz112 if AAzP~2`,0# and 2AAz112 if AAzP@0,̀ ! ~d!.

These structures exist as excitations in the condensate state, like a rarefaction of the field. Their forms@see Figs. 5~c! and
6 ~d!# suggest the names peak bubble and cusp bubble, respectively. Additionally we have

AAz221 if AAzPS 2`,2
p

2 G and 2AAz112 if AAzPF2
p

2
,` D ~e!.

This is the usual peak soliton~7! and exists as an excitation to the nonzero background~see Fig. 7!.
For

F→21 while z→2` and F→21 while z→`, ~19!

the two branches

AAz111 if AAzPS 2`,
p

2 G and 2AAz211 if AAzPF2
p

2
,` D ~ f!

merge together and produce the configuration named the loop soliton~Fig. 8!.
Let us now consider the case of solutions that are specially obtained by coalescing two branches of each solution p

~15! for the second type of nonzero gapD2 in Eq. ~16!.
For the boundary condition~17!, the solutions are

AAS z1221
p

2 D if AAzP~2`,0# and 2AAS z2212
p

2 D if AAzP@0,̀ ! ~g!,

AAS z2222
p

2 D if AAzP~2`,0# and 2AAS z1211
p

2 D if AAzP@0,̀ ! ~h!.

These relations, represented as pictures in Figs. 9~g! and 10~h! are usually referred to as shock waves because of the ab
discontinuities that are observed when they are traveling. This suggests the interpretation of such solutions as pro
defects in the lattice. Shock waves are universal entities that are observed in many diverse nonlinear systems. How
surprising that they can appear analytically in the second order nonlinear equations~1!.

For boundary conditions~18! the solutions can be constructed using the following two branches:

AAS z1122
p

2 D if AAzP~2`,0# and 2AAS z1122
p

2 D if AAzP@0,̀ ! ~ i!,

AAS z2211
p

2 D if AAzP~2`,0# and 2AAS z2211
p

2 D if AAzP@0,̀ ! ~ j!.

Both solutions exist as excitations above the condensate state; the first one takes the form of a hump soliton@Fig. 11# while
Fig. 12 ~j! represents a peakon.

For boundary condition~19! the soliton structures can be obtained by utilizing the following relations:
046606-6
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AAS z2111
p

2 D if AAzPS 2`,
p

2 G and 2AAS z2111
p

2 D if AAzPF2
p

2
,` D ~k!,

AAS z1112
p

2 D if AAzP~2`,0# and 2AAS z1112
p

2 D if AAzP@0,̀ ! ~ l!.
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The first pair is a loop soliton~see Fig. 13! and the second is
another representative of the peakon~see Fig. 14!.

All of these rich structures are obtained by consider
the anharmonicity in the intersite interaction potential. In a
dition to the well-known solitons, different solitonic struc
tures such as defectons, shocks, peakons, cusps, etc.
appear by fixing boundary conditions of condensed ty
Looplike solitons similar to that found in@17# can also exist.
Also, as one can observe from the solutions above repo
we have a peak bubble that exists as a rarefaction in
constant background field. Such structures were also
tained recently in other types of nonlinear differential equ
tion, for example, in the coupled Dym equations by using
algebraic geometric approach@18#. Similar humps as nonlin-
ear excitations to the ground state of condensate type h
also recently been shown in plasma physics@19#.

Below we calculate the energy of each structure tha
shown above. Despite the very interesting shape that l
solitons possess, their energies show divergent values.
means that for real production of such structures we n
infinite energy, and that is in accordance with the stateme
of the general theory of topological solitons. The tw
needed to form loops can absorb infinite energy in one
mensional space if we have already fixed beforehand
conditions at infinity.

Let us now present the results for energies that can
obtained from

Etotal5E
2p/2g

p/2g F1

2
F t

21
1

2
ClFx

21
1

4
CnlFx

4

1
1

2
V0~12F2!2Gdx. ~20!

The final forms of the energies of all the structures fou
above are represented by the following expressions:

1

8
p~u21Cl !S 1

AD 1/2

1
3

64
~p22!CnlS 1

AD 3/2

1
1

8
~61p!AAV0 ~a! and ~c!, ~21!

1

2 S 2

8
p11D ~u21Cl !S 1

AD 1/2

1
1

32F51
3

2
pGCnlaS 1

AD 3/2

1
1

4 S 1

2
p13DAAV0 ~b!,
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Etotal
i

2
1

Etotal
j

2
~e!,

S 1

2
2

1

8
p D ~v21Cl !S 1

AD 1/2

1
1

16F5

2
2

3

4
pGCnlaS 1

AD 3/2

1S 2
1

8
p1

3

4DaAAV0 ~g! and ~ j!,

S 1

8
p2

1

2
ln 2D ~v21Cl !S 1

AD 1/2

1
1

16F33

16
2

21

32
pGCnlaS 1

AD 3/2

1S 3

4
1

1

8
p DaAAV0 ~h! and ~ i!,

S 3

8
p1

1

2D ~v21Cl !S 1

AD 1/2

1
1

16F5

2
1

9

4
pGCnlaS 1

AD 3/2

1S 3

8
p1

3

4DaAAV0~ l!.

For ~d!, ~f!, and~k!, the total energy diverges. The energi
of all our soliton structures are restricted by their velocitie
Thus to avoid singularities in energy values, from Eq.~21! it
is necessary to impose the condition

A5
4V0

u22Cl

.0. ~22!

FIG. 12. Plot showing the form of a peakon obtained by me
ing two branches as is explained in the relations~j!.
6-7
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III. PROPERTIES OF THE SOLITON SOLUTIONS

A small deviation from the vacuum solutionsF5F0
1h,uhu!1, for solutions with trivialF050 and condensed
vacuumF051 is described by the linearized equation

h tt2Clhxx1m2h50 ~23!

with m522V0 for solutions above the trivial vacuum an
m54V0 for solutions with condensate boundary condition
The solutions of Eq.~23! are plane traveling waves wit
dispersion

v25Clk
21m2.

Consequently, the vacuum will be stable ifk2.2m2/Cl .
Then the linear excitations above the trivial vacuum cor
spond to particles of massm5A22V0, and m5A4V0 for
solutions with nontrivial vacua.

For the trivial boundary condition in the parameter spa
we obtained a restriction~6! under which drop compacton
and peakons could exist. As was demonstrated above
energy of these structures tends to be divergent as the v
ity approaches the value ofu0.

From Eqs.~6! and ~14! it is not difficult to derive the
possible velocity values of drop compactons and peako
u5u

I
, and of the whole family of solutions with velocitie

u5uII with condensed boundary conditions. The explicit e
pression for the velocityu is presented as follows:

~u!25Cl6A26V0Cnl. ~24!

Thus we find a formal degeneracy of the velocity for soli
nic structures satisfying the two different types of bound
condition at infinity. This apparent degeneracy disappe
when the energy expressions for both types of solution@Eqs.
~10!, ~11!, and~21!# are analyzed. Indeed, studying the no
linear excitation above the trivial vacuum, the drop comp

FIG. 13. Representation of an exotic loop soliton for the expr
sions~k!. After evaluation of the energy of this configuration on
finds that it diverges.
04660
.

-

e

he
c-

s,

-

-
y
rs

-
-

tons and peakons will travel with velocities with the sign1
in the right hand side of Eq.~24! when

V0.0, u22Cl.0, and Cnl,0, ~25!

and with negative sign when

V0,0, u22Cl,0, and Cnl.0. ~26!

The solutions above a condensed vacuum possess comp
inverse properties; for instance, the sign (1) in the right
hand side of Eq.~24! will occur if V0,0, u22Cl.0, and
Cnl.0, and similarly for the negative sign. For both cas
static configurations are available whenV052(Cl)

2/6Cnl .
Finally, we can say that they exist in different sectors of t
main parametersV0 andCnl .

For solutions satisfying condensate boundary conditio
the strong localizations are determined by the topolog
invariant charge associated with their field values at infin
On the other hand, both parts of the coalescing soluti
travel with equal velocityu in the same direction. All these
requirements satisfy the restriction imposed onA in Eq. ~ 22!
to be positive. Additionally, ifu22Cl50 we should need
infinite energy values because of Eqs.~10!, ~11!, and ~21!.
This situation can be avoided since it represents a nonph
cal situation.

Next, we consider the scale transformationFa5F(az)
for the solutions with trivial vacuum. The initial Hamiltonia
for the stationary fieldF(z) can be rewritten as

H5T11T21U1 , ~27!

with

T15
1

2
~u21Cl !E ~F

z
!2dz, T25

1

4
CnlE ~F

z
!4dz,

U15V0E ~F2/221!F2dz.

As is obvious, the extremum of the Hamiltonian~27! will be
given by the solutionFa whena51 @20#. Under this trans-
formation, Eq.~27! becomes

-

FIG. 14. We can observe here the plot of a typical peak soli
for the structure~l! in text.
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H@Fa#5aT11a3T21
1

a
U1 . ~28!

Using (dH/da)a51 we can get the virial relation

T113T22U150.

From Eq.~28! it also follows that for stable structures und
these transformations (a oscillations! the second variation
d2H of the Hamiltonian~28! has to satisfy the following
relation:

S d2H

da2 D
a51

52~3T21U1!.0. ~29!

First, by making use of the relation~10! for drop solutions,
the second variationd2H represented by Eq.~29! takes the
form

d2H52
pV0Au22Cl

A2AV0

. ~30!

In order to have positive values ofd2H we need

V0,0 and u2,Cl , ~31!

which correspond to solutions with velocity values@accord-
ing to Eq.~26!#

~u!25Cl2A26V0Cnl. ~32!

For peakons, the same treatment gives us the restriction
finding stable solitons for which the second variation of t
Hamiltonian gives

d2H5
1

2A2

~Cl2u2!AV0

Au22Cl

. ~33!

For positivity of the second variation of the Hamiltonian~33!
it is necessary to have once again the same restriction~31! as
in the case of drop compactons. Consequently, these s
tions will have the velocity values determined by Eq.~32!.
Then, the case of physical interest could occur when
restriction ~31! is satisfied, meaning that, for this case, t
solutions under consideration~peakons and drop compac
tons! are stable with respect toa oscillations.

Second, just as we did in our study of solutions w
trivial boundary conditions, here we also use thea scale
transformation and find the following condition of stabili
under this transformation for the whole class of energies
played in Eq.~21!. The second variation for the Hamiltonia
of this class is the same as in Eq.~29!, but now with

T25
1

4
CnlE ~Fz!

4dz, U25
1

2
V0E ~12F2!2dz.

It is noticeable that the energy formulas for all solutio
encountered above have the following typical form in ter
of the three parametersu, Cl , andV0 @see Eq.~21!#:
04660
for

lu-

e

s-

s

E5a
~u21Cl !ACl2u2

2AV0

2b
~u22Cl !

2A~Cl2u2!3

48V0
2AV0

12gV0A V0

Cl2u2
,

a, b, andg being the respective numerical coefficients
each term of the energy expression. In order to explore
stability of these structures undera oscillations we utilize
Eq. ~29! and after some calculation find that the structu
with nontrivial vacuum can exhibit stability undera oscilla-
tions for

Cl.u2.Cl2kV0 ~34!

whenV0.0, Cl2u2.0, andk52(2g/b)1/4, or for

Cl1kV1.u2.Cl ~35!

whenV052V1,0, Cl2u2,0, andV1.0.
Next we turn to a qualitative explanation of which stru

tures of all those presented here with the nontrivial vacu
are lowest in energy. To do this, we check how the ene
depends on the velocity of each structure. In Fig. 15
present the plots of this dependence. The structures
higher probability of appearing in this model are those t
carry less energy in comparison with others for a given
locity. As we see from Fig. 15, these structures are th
termed hump@~e! and ~i!# and peak~j! solitons as different
excitations to a constant fieldF51 When at infinity we have
different field valuesF561, the shocklike structures~g!
and~h! are those with more probability of appearing in com
parison with the kinks, for example. These structures n
less energy to become nonlinear excitations with respect
constant field in the first case and to different constant fi
values in the second case.

For structures that emerge as nonlinear excitations ab
the trivial vacuum, the peakons are those that carry less

FIG. 15. Plot showing the dependence of the energy on
velocity for each structure with nontrivial vacuum at infinity. Fo
the valuesV052,Cl514.40 the structures that resemble humps,
fects, and peaks need less energy to be excited above their c
sponding vacuum fields.
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ergy in comparison to drop compactons for a given veloc
It is not difficult to check this statement by simply analyzin
the analytic formulas for their energy.

Physically, these results are quite interesting, given
different applications that they could have in hydrodynami
for instance: above the unperturbed constant surface of
ter, under different perturbations, the interaction of nonl
earity and anharmonicity could lead to generation of peak
and bell-like structures, such as one can observe in a bas
liquid, for example.

Let us finally remark that, as was reported in@13# the kink
compactons are available whenCnl.0. Our compacton so
lutions according to Eq.~26! also appear when this inequa
ity is satisfied. In other words, this region of existence a
shares the drop compactons obtained here with the s
(2) in the right hand side of Eq.~24!. This interesting be-
havior is very similar to that obtained in other reports in t
literature. For instance, the drop solutions can coexist w
kink solitons in the same parameter region of the cub
quintic nonlinear Schro¨dinger equation@9#. They exist in the
same region of the~one! parameter domain but in differen
vacuums. This feature seems at first glance to be unive
i.e., the coexistence in the parametric domain of drop s
tons with kink solitons must be possible in many nonline
systems.

IV. CONCLUSIONS

As is well known, the existence of solitons, and especia
particular versions such as compactonlike structures in n
linear equations ~differential and discrete or integro
differential! implies strict requirements to be satisfied. Sin
solitonlike structures are very special solutions, in this pa
we have obtained conditions determined by combination
the parameters of the model in order to integrate the co
sponding nonlinear evolution equations. We have dem
strated that anharmonicity in the interparticle interactions
allow the appearance of a rich variety of static and travel
solitonic structures. The configurations obtained here are
termined specifically by applying two types of bounda
condition, trivial and condensate, and by considering the s
of the coupling in the anharmonicity term of the inters
l/
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potential that provides additional attractive or repulsive
teraction between sites. The trivial boundary condition
lows the appearance of drop compacton and peak solit
when the parameters satisfy the specific algebraic equat
~6!. When the boundary condition is of the condensate ty
and the relevant parameters satisfy Eq.~14!, solitonic struc-
tures like defects, kinks, bubbles, peakons, and cusps w
found. These solutions complement the rich family of soli
nic structures already reported in the literature. At the sa
time, all structures will travel with the same velocity if w
fix the parameters and the boundary conditions beforeha
It should be noted that the real values of the energies@Eqs.
~10!, ~11!, and~21!# of both types of solutions limit the val
ues of the traveling velocity. For the appearance in the m
dium of exotic loop soliton structures, infinite energies a
required. In the case of the condensed type of boundary c
dition, of all the variety of structures found here, the mo
probable to exist are structures like hump and peak solit
as nonlinear excitations above a constant field, while defe
are of lower energy when the field has different vacuums
infinity. For solutions with the trivial vacuum, those terme
peakons carry less energy for given velocity values. Us
the virial approximation we can predict the region of validi
for the velocities of all these structures and subsequently
conditions for their stability under the so-calleda oscilla-
tions.

Checking the formulas for the velocities of both of the
types of structure, one can easily find that there is a crit
value of velocity that divides the regions of existence in t
parameter space for both types of solution. This value co
sponds to those structures found by Remoissenet and
workers in@13–15#. For our solutions, this velocity valueu
56ACl is inaccessible. Finally, we can say that much wo
must be done in the near future to relate these result
practical applications in nonlinear optics, for example, and
study the interactions between these solutions.
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